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An experimental study of a steady, incompressible, three-dimensional turbulent 
boundary layer approaching separation is reported. The flow field external to the 
boundary layer was deflected laterally by turning vanes so that streamwise flow 
deceleration occurred simultaneous with cross-flow acceleration. At 2 1 stations pro- 
files of the mean-velocity components and of the six Reynolds stresses were measured 
with single- and X-hot-wire probes, which were rotatable around their longitudinal 
axes. The calibration of the hot wires with respect to magnitude and direction of the 
velocity vector as well as the method of evaluating the Reynolds stresses from the 
measured data are described in a separate paper (Miiller 1982, hereinafter referred to 
as 11). At each measuring station the wall shear stress was inferred from a Preston-tube 
measurement as well as from a Clauser chart. With the measured profiles of the mean 
velocities and of the Reynolds stresses several assumptions used for turbulence 
modelling were checked for their validity in this flow. For example, eddy viscosities 
€or both tangential directions and the corresponding mixing lengths as well as the ratio 
of resultant turbulent shear stress to turbulent kinetic energy were derived from the 
data. 

1. Introduction 
Present and future problems in fluid mechanics require prediction methods for three- 

dimensional turbulent boundary-layer flows. One significant item for the development 
of reliable computational methods is the improved understanding of turbulent motions 
(Chapman 1980). Since a general model describing the turbulent momentum and 
energy transfer is not yet available, empirically fitted models will still have to be used 
to describe the time-averaged turbulent flows. These models are usually limited to a 
special class of flows, but are expected to be valid a t  least over a range of flow conditions. 
At the Euromech 60 meeting held at  Trondheim in 1975, the results of several prediction 
methods were compared with mean velocities, wall shear stresses and integral profile 
parameters measured in three-dimensional turbulent boundary layers (see East 1975; 
Fannelop & Krogstad 1975). With either first-order or second-order closure assump- 
tions fully three-dimensional flows could not be simulated with sufficient accuracy. 
Additionally Krause & Kordulla showed (see also Krause 1974)) using theimplicit finite- 
difference method of Krause, Hirschel & Bothmann (1969) and Krause, Hirschel & 
Kordulla (1976), that the calculated results depended not only on the choice of closure 
assumption (algebraic turbulence models), but also on the numerical accuracy. With 
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FIGURE 1. Schematic of experimental set up and indication of 
measuring stations: (a )  side view; ( b )  top view. 

a fourth-order accurate method the simulation of the experiment of van den Berg & 
Elsenaar (1972) and Elsenaar & Boelsma (1974) (see also van den Berg et ul. 1975) 
predicted wall shear stresses as much as 15% lower than those obtained with a second- 
order method. Compared with the experimental data, both calculations yielded larger 
mean velocities and smaller turning angles in the near-wall region of the fully three- 
dimensional flow, thus indicating an overestimated momentum transfer towards the 
wall by the Reynolds shear stresses. 

A major reason for the discrepancies between experiment and numerical simulations 
is the insufficient understanding of the mean-flow field and the turbulence structure of 
three-dimensional boundary layers. Bradshaw (1972) and Fannelop & Krogstad (1975) 
expected to gain more insight into the turbulent momentum transfer from further 
detailed experimental investigations. Many experiments have already contributed to 
our current ideas about three-dimensional pressure-driven turbulent boundary layers. 
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FIGURE 2. Measured pressure distribution. 

For example, the boundary layer approaching a cylinder standing perpendicularly 
on a wall was investigated by Hornung & Joubert (1963), East & Hoxey (1969), 
Krogstad (1979) and Dechow (1977) (see also Dechow & Felsch 1977). Three-dimen- 
sional turbulent boundary layers with non-zero pressure gradients were also investi- 
gated by Johnston (1 960), Pierce & Ekzewe (1  974) and Pierce & Duerson (1 975) ; these 
flow fields were created by impinging a two-dimensional flow on a wall perpendicular 
to  the stream axis, thus deflecting the flow laterally. Measurements in quasi-two- 
dimensional flows, dependent on two space co-ordinates only, were carried out by 
van den Berg & Elsenaar (1972) and Elsenaar & Boelsma (1974), who investigated a 
boundary layer with adverse pressure gradients leading to separation, and Johnston 
(1970), who investigated a flow approaching a swept, forward-facing step. However, 
there is a need €or three-dimensional turbulent boundary-layer experiments that  are 
amenable to numerical simulation and that provide detailed and accurate data suitable 
for both checking mean-momentum balance and the validity of turbulence models. 
The present investigation was intended to meet these requirements. In a three- 
dimensional boundary layer the Reynolds stresses and the mean flow field as well as 
the wall shear stresses were measured, and the pressure distribution was mapped a t  
the outer edge of the boundary layer. 

5 F L M  I19 
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FIGURE 3. Sketch of velocity profiles and definition of co-ordinate systems used. 

2. Description of the experiment 
2.1. Experimental setup and measurement technique 

The experiment was carried out in the three-dimensional turbulent boundary layer on 
a plane smooth Plexiglass plate placed vertically in the open test section (length 
1.6m, diameter 1.2m) of the return-circuit low-speed wind tunnel of the Aero- 
dynamisches Institut. The plate was fixed and adjusted with triangular supports on 
the back side. The free stream was deflected laterally by means of turning vanes as 
illustrated in figure 1, resulting in turning angles up to 20" compared with the initial 
flow direction. Thereby a pressure distribution as displayed in figure 2 was imposed on 
the boundary-layer flow, and caused the wall streamlines to turn up to 50". Velocity 
profiles typical for this pressure-driven three-dimensional boundary layer are sketched 
in figure 3, as well as co-ordinate systems used later. In  figure 1, two streamlines 
determined by numerous hot-wire measurements in the vicinity of the wall and in 
the outer-edge flow are shown which include the flow field under investigation. The 
measuring stations covering the attached flow region are marked by crosses. The 
boundary-layer thickness was artificially increased by tripping the flow with a wire 
of 5 mm diameter attached to the tapered leading edge with tape. The unit Reynolds 
number UJv was 1.95 x 1O6m-l. 

The measurements were carried out with a goose-neck-shaped probe support 
suggested by Johnston (1970) and also used by Dechow (1977) (figures 4 and 5 ) .  It 
could be moved normal to the wall and could be aligned with the local yaw direction 
while the tip of the probe stayed on the y-axis. Single- and X-hot-wire probes as well 
as pressure probes could be inserted. Because measuring the complete Reynolds stress 
tensor required the hot-wire probes to be rotated around their longitudinal axes, the 
probe support allowed a 360" rotation in intervals of 45". Additionally it was inclined 
at a fixed angle c0 = 10" with respect to the wall for carrying out near-wall measure- 
ments. The angle e0 and the distance y from the wall were adjusted with a mechanical 
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FIGURE 4. Schematic of probe support. 

gauge attached to the probe support prior to the measurements (figure 5 ) ;  details of 
the adjustments were described by Muller (1979). The accuracy in y-direction was 
estimated to be k 0.05 mm for a wire lying parallel to the wall. 

We used DISA 55P11 straight, single-sensor probes and 55P61 X-hot-wire probes 
(5,urn platinum-tungsten wires, l / d  N 240) throughout the measurements presented 
in this report. The main equipment consisted out of two DISA anemometer systems, 
each with a 55D01 bridge, 55D10 linearizer and 55D35 r.m.s. voltmeter. Additionally, 
two Hewlett-Packard HP5326B timer-counters, operated as digital voltmeters, and a 
Thermo Systems correlator TSI 1015C were used. The upper frequency response of the 
hot-wire systems was adjusted to about 20 kHz, which was sufficient to  resolve the 
highest encountered turbulent frequencies of about 7 kHz. 

The method of measuring the mean velocities was described by Muller & Krause 
(1 979), and is illustrated in figure 6. Briefly the yaw angle was measured by estimating 
the local mean-flow direction, rotating a single normal hot-wire lying tangential to the 
surface around the y-axis with angles of f A/3 = 45" in both directions and comparing 

5-2 
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FIGURE 5 .  Support with hot-wire probe and gauge in front 
of Plexiglas plate; scale I : 6. 
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FIGURE 6. Measurement of yaw angle /3 and pitch angle 6 of local 
total-velocity vector U,. 

the hot-wire mean voltage outputs. The line of symmetry found when the wire signals 
were equal was interpreted as the mean-flow direction and defined the local measuring 
co-ordinate system (Xm, ym, z m ) .  This procedure, which required an average of ten 
measurements a t  each point, was checked beforehand by means of the hot-wire cali- 
bration device referred to in 11. Several measurements were carried out down to 
y = 0.2 mm from the wall, but, because of scatter, changes in yaw directions could only 
be detected for y 2 0.5 mm. The accuracy of the measured yaw angles as checked with 
repeated measurements and different hot-wire probes was about 5 0.5". Errors due to 
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probe interferences might be inherent in the results obtained close to the wall (fm a 
discussion see Vagt & Fernholz 1979). After measuring the yaw distribution through- 
out the boundary layer the magnitude of the mean velocities was measured with the 
probe aligned with the local yaw directions. Assuming collateral flow a t  the wall, the 
measurements were carried out as close as y = 0.1 mm. Then an X-hot-wire probe was 
inserted in the support. Because in a local (Xm, Ym,  z,)-co-ordinate system the mean- 
velocity component iTmvanished by definition, both remaining components Urn and 
V, of the total velocity U, could be measured with the plane of the wires being per- 
pendicular to the wall (figure 6). The X-probe was also used for measurements of 
velocity fluctuations. The smallest wall distance in these measurements was 
y = 1.5mm, though the results were expected to be impaired by mean-velocity 
gradients in the vicinity of the wall (see e.g. Gessner & Moller 1971; Sandborn 1976). 

During the experiment great care was necessary to avoid calibration drift due to 
deposit of dust on the wires or to temperature changes in the free stream. Before and 
after the 16r.m.s. measurements a t  one spatial point the hot-wire calibration with 
respect to the magnitude of the velocity was checked; maximum deviations of 1 yo of 
the resultant velocity were tolerated. The calibrations were carried out in the free 
stream behind the wind-tunnel nozzle, about 200 mm above the plate. A removable 
probe support was used to place the hot wires perpendicular to the flow. 

2.2. Reduction of hot-wire measurements 

Since preliminary investigations indicated that the measured turbulent stresses could 
be strongly influenced by experimental errors, an individual calibration of each hot 
wire used in the experiment was necessary. The calibrations with respect to magnitude 
as well as direction of the velocity vector had to be taken into account in the data 
reduction; for a detailed description of the procedure and calibration curves see 11. The 
time-averaged response of a hot-wire was described by an effective cooling velocity U,: 

E was the electrical voltage related to  U, by the calibration constant S ;  q, and ar 
were the velocity components normal and tangential to the wire in the plane of the 
prongs; F, was perpendicular to both. The calibration by means of a specially 
designed calibration device revealed that the tangential sensitivity k was not constant, 
as measured by Champagne, Sleicher & Wehrmann (1967), but was dependent on the 
magnitude and direction of the velocity vector, for examples see I1 or Miiller & Krause 
( 1  979). This dependence required an iterative procedure to evaluate the vertical mean- 
velocity component rm from the measurements. The cross-flow velocity DK2 en- 
countered while rotating the hot-wire probe around its longitudinal axis was taken into 
account with an averaged calibrated sensitivity h = 1.2. In I1 the necessity of cali- 
brating individually each hot wire used is demonstrated by analysing the influence of 
empirical cooling laws on the measured Reynolds stresses and by comparing actual 
results with those evaluated with the empirical law of Champagne et al. Since the 
cooling law (1) was formulated for a hot-wire fixed co-ordinate system, the velocities 
uK1, u, and U., were described in terms of the mean and fluctuating velocities om + u,, 
vm +urn, w m  of the local boundary-layer co-ordinate system (Xm, y m ,  2,) (figures 4 
and 6) .  For determining the time-averaged cooling velocity oc, (1 )  had to be root- 
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and comparison with Mager's (1952) profiles. 

expanded. After neglecting all terms of second and higher order, the cooling velocity 
corresponding to laminar flow was retained, Using this approximation for evaluating 
the magnitude of the total velocity vector yielded errors below 1.5%. The equations 
for the Reynolds stresses were obtained by squaring the fluctuating part of the 
instantaneous cooling velocity U, and neglecting all correlations higher than second 
order. The equations for the expanded cooling velocity and those actually used for 
evaluating the mean velocities and the Reynolds stresses can be found in 11. The 
applicability of the conventional linearized method for evaluating the Reynolds stress 
tensor was justified by additional measurements in a flow with local turbulence levels 
up to 35%, thus exceeding the maximum of 23 yo encountered in the present investi- 
gation. All triple velocity correlations, which are usually neglected, were also measured 
and taken into account in the data reduction. The results as described in I1 revealed an 
increasing influence on the calculated Reynolds stresses for turbulence levels above 
20% compared with the results calculated with the conventional linearized method 
from the same set of data. 

The Reynolds stress measurements were carried out with X-hot-wire probes 
rotatable around the longitudinal axis. At each measuring point the r.m.s. values of 
both voltage fluctuations as well as those of their sum and difference were measured 
at four roll angles with intervals of 45'. To obtain accurate r.m.8. values theintegration 
time was chosen to be two minutes. The Reynolds stress tensor was evaluated with 
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three different sets of data out of the 16r.m.s. measurements; for details see 11. The 
relative errors of these results were about lo%, and the errors in the shear stresses 
UmWm and 2.'mwm were estimated as 10% of the local streamwise component -. 

The profiles of mean velocities and Reynolds stresses discussed in 5 3 are unsmoothed 
results measured in the way outlined above. 

3. Results 
3.1. Pressure distribution 

The static pressure distribution (figure 2) was measured a t  the boundary-layer edge 
by means of Prandtl tubes aligned with the local yaw direction as obtained from the 
hot-wire surveys; Betz and micromanometers were used. Throughout the measure- 
ments the Prandtl tubes had a fixed angle of attack of 2" against the wall, so that the 
maximum misalignment between local velocity vector and probe axis was 3", resulting 
in experimental errors up to 0-5 yo according to Aerodynamische Versuchsanstalt und 
Max-Planck-Institut fur Stromungsforschung ( 1964). The measurements were carried 
out along lines of x = constant, with intervals of 25 mm in the x-direction and 50 mm 
in the x-direction. 

The order of magnitude of pressure variations in the direction normal to the wall 
was estimated a t  station E5 by evaluating all terms of the y-momentum equation 
from the measurements. For y 7 13 mm the only relevant term was p avT/ay, yielding 
a maximum pressure change of 1 % compared with the pressure measured a t  the edge 
of the boundary layer. In  the region y 7 13 mm the leading terms p a 7 p y  andp a a v p x  
were of opposite sign, so that pressure variations in the outer layer could not be 
detected. 

3.2. Mean velocities 

The profiles of the measured time-averaged velocities U ,  V and are displayed in 
figure 7;  each type of symbol represents a fixed z-co-ordinate. As indicated in figure 1, 
the measuring stations are labelled with letters for increasing x-co-ordinate and with 
numbers for increasing z-co-ordinate. The figures reveal the downstream development 
of the flow. At the measuring stations farthest upstream (column A )  the flow was 
nearly two-dimensional, with no detectable differences between outer edge- and wall- 
streamline directions. The velocity component w was not zero because the wind- 
tunnel centre line and the x-direction did not coincide exactly. The v-velocity was too 
small to be determined. Farther downstream, the u-component was decelerated 
continuously with increasing x and decreasing z ,  i.e. increasing static pressures. 
Accordingly the cross flow F increased. This tendency is also displayed by the polar 
plots in figures 8 (a ,  b) .  Johnston (1960) has postulated a universal triangular shape for 
the cross-flow profiles Ws(U,), but this could not be verified in this investigation or for 
example in that of Hornung & Joubert (1963). In  Johnston's experiment the Fs maxima 
lay in the buffer layer a t  y+ N 15, Hornung & Joubert determined y+ (ws ,,,) N 150, 
while here these values decreased from 215 to 175 for profiles A5 to E5 and scattered 
around 100 for profiles E 4  to E7. The results in figure 8 (a )  are compared with the cross- 
flow profiles of Mager (1952), 

- -  

- _  
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but these do not represent the measured data. Since possible changes of the flow 
direction could not be detected in the region very close to the wall, the present results 
for gs + 0 may not be regarded as a proof of collateral near-wall flow. 

3.3. Wall shear stress 

The determination of the wall shear stress was restricted to indirect measurements. 
At each measuring station the wall friction coefficient was obtained with a Preston 
tube (Preston 1954), and was derived from the velocity distribution according to  
Clauser (1954). During the last few years these methods, although originally developed 
for two-dimensional turbulent flows with zero or small pressure gradients, were 
successfully applied in three-dimensional flows with small or moderate adverse pressure 
gradients. 

Wall shear stress measurements with Preston tubes rely on similarity of the inner- 
layer velocity profile of two-dimensional flows, and are limited to  small or moderate 
pressure gradients (see Patel 1965). Prahlad (1968) and Krogstad (1979) applied the 
Preston-tube measurements in their experiments in pressure-driven three-dimensional 
boundary layers. Up to moderate pressure gradients they found good agreement 
between the profiles of the resultant time-averaged velocities and the logarithmic law 
of the wall, and determined the wall shear stresses with the calibrations of Patel (1965). 
Likewise the wall-shear-stress measurements were carried out in this investigation 
using a tube with 0.83 mm outside diameter and with a ratio of inner to outer diameter 
of 0.68. At each measuring station the tube was aligned with the mean-flow yaw 
direction measured closest to the wall. 

The errors of the wall shear stresses measured in two-dimensional flows with adverse 
pressure gradients were determined by Patel as 3% or By0, if the pressure gradient 
(v/pu:) (ap/ax) was smaller than 0.01 or 0.015 respectively; u, is the friction velocity 
( ~ ~ / p ) * .  I n  the present experiment use of the resultant pressure-gradient vector in the 
same manner as Krogstad (1979) resulted in maximum errors for the wall shear stress 
lying a t  the upper limit given by Patel. However, if the component of the pressure 
gradient in wall-shear-stress direction is relevant, as assumed by Prahlad (1 968), then 
the errors due to pressure gradients would be smaller than 3%. 

Because the wall-shear-stress measurements with Preston tubes are based on the 
existence of a law-of-the-wall region, the universal logarithmic law of two-dimensional 
flows was compared with measured velocity profiles (figure 9). The broken lines were 
evaluated with the wall shear stresses measured with the Preston tube. As suggested 
by Coles (19561, the mean velocity lJ& in the plane spanned by the wall-shear-stress 
vector and the y-axis was used. At least to  a good approximation the existence of a 
law-of-the-wall region has been verified; Krogstad and Prahlad obtained comparable 
results. The linear velocity distribution near the wall is also shown in figure 9; however, 
a comparison with the measured data is not possible owing to increasing experimental 
errors in this region. 

In  figure 9 the measured velocity profiles are compared with the law of the wall. 
If in turn the validity of the logarithmic law is presumed, the wall shear stresses can be 
deduced from the measured velocity profiles according to Clauser (1954). Pierce & 
Zimmermann ( 1973) checked the applicability of this method for three-dimensional 
flows. They used five different models proposed in the literature to  describe the 
measured three-dimensional velocity profiles of Pierce & Krommenhoek ( 1968) and 
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Prahlad (1968), and for each case they compared the wall shear stresses obtained by a 
Clauser chart with the data measured directly in the first investigation and obtained 
with Preston tubes in the latter. They achieved good agreement using the profiles 
Dcl(y) and Dg(y) as well; gg is the mean total velocity. In  the present experiment, as in 
that of Pierce & Zimmermann, the shear stress was determined using Schraub & Kline's 
(1965) procedure. The identity 
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together with the law of the wall u+ = f (y+), provided an implicit equation for u+ or 
u, respectively. Combining (3) with Spalding's (1961) extended law of the wall, which 
also takes into account the velocity profile of the buffer layer below the logarithmic 
region, yields - 

'!!I = ~ + 2  + u+e-Ck(ekU+ - 1 - ku+ - l ( k t b + ) 2  2 - 1 6 ( k  u+ ) 3 1. (4) 
v 



136 U .  R.  Muller 

0.10 0.0020 

0.08 0.001 6 

0.06 0.001 2 

0.04 0.0008 

0.02 0.0004 

0 0 

0.08 0.00 16 
- 1  ~ 

0.0012 ulmu/m 
- 

u:, 7 0.06 (z) 0.04 0.0008 u2 
0.02 0.0004 

0 0 

0.08 0.00 1 6 

0.06 0.001 2 

0.04 0.0008 

0.02 0,0004 

0 0 

0.0016 

0-001 2 

0-0008 

0.0004 

0 

0.0012 

0.0008 

0,0004 

0 

0.00 12 

0.0008 

0.0004 

0 

Y (mm) Y (mm) 
FIGURE 10 (a,  b ) .  For caption see p. 140. 

According to Coles (1956) the constants k = 0.41 and C = 5.0 were used. At each 
spatial measuring point (4) was iteratively solved for u, using a computer; then the 
results of the logarithmic regions were averaged. The law-of-the-wall profiles obtained 
with these data are indicated by solid lines in figure 9. The deviations of the wall 
shear stresses inferred by the Clauser method compared with the results of the Preston 
tube measurements were within 10%. 

The wall friction velocities obtained with both methods, as well as those calculated 
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with the formuIa of Ludwieg & Tillmann (1949) applied to the streamwise velocity 
profiles, were tabulated by Muller (1979, 1980). 

3.4. Measured Reynolds stresses and comparison with closure assumptions 
The Reynolds stresses of the local measuring co-ordinate systems (Xm,  ym, 2,) are 
displayed in figure 10. The data are normalized with the free-stream velocity Urn to 
keep them independent of scaling variables. In  each diagram all measurements a t  one 
x-co-ordinate are displayed to  reveal the downstream development. The labels of the 
measuring stations are summarized in figure 1. The profiles of the normal stresses 
(figure 10a) a t  the stations farthest upstream have the same shape as those in a two- 
dimensional zero-pressure-gradient boundary layer (see e.g. Klebanoff 1955). At the 
outer edge they exhibit a free-stream turbulence level of 1 yo. The dominating shear 
stress has an unusual maximum lying away from the wall, which can perhaps 
be explained by a remaining influence of the tripping device at the leading edge or by 
measuring errors due to large mean-velocity gradients. At the stations of column B 
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(figure lob)  the maxima of Um‘U, lie a t  the wall. At column A the shear stresses T m K  

and-aresmall compared t o  % m u m ,  but a t  column B the correlationu,mis about 
one third of UmZI, over the major part of the boundary layer. These relative large 
values show that even though the mean flow is nearly two-dimensional the turbulence 
field is not. 

The following figures show that the normal stresses change slowly in downstream 
direction, while the profiles of the turbulent stresses m m  and vmwm approach shapes 
that are characteristic for boundary layers with adverse pressure gradients ; beginning 
at the measuring stations of column C (figure ~ O C ) ,  the- maxima are shifted away 
from the surface according to the momentum balance near the wall arZm/ay = ap/i3xm. 
The ZlmWm correlations increase continuously - between columns B and F, and reach 
the order of magnitude of u i i .  The u& component, too, shows a behaviour typical of 
decelerated boundary layers. With decreasing distance to separation, for example a t  
station D2, the maxima of thecprofi les  are shifted away from the wall. This develop- 
ment can also be recognized a t  measuring column E (figure 10e) .  The results for 
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column F (figure 10f) show enlarged profiles of the and UmWm correlations, the 
other profiles correspond to those of the preceding stations. 

With the measured profiles of mean velocities and of Reynolds stresses the validity 
of closure assumptions with respect to the present flow field can be examined. For this 
purpose the measurements were smoothed by cubic splines according to Reinsch (1967). 
First profiles of the eddy viscosities for both tangential directions 

were deduced. Those corresponding to the local streamwise directions are displayed in 
figure 11,  normalized by the outer edge velocity ge and the displacement thickness S,, 
which was evaluated from the streamwise velocity profile u&). These diagrams as 
well as the following ones exhibit the downstream development of the variable under 
consideration by regarding the measurements of row 5 and of column E. Corresponding 
to the zLm2)m profiles the viscosity profiles in figure 11 (a)  have maxima a t  y/S 2: 0.5, 
which decrease farther downstream; S is the boundary-layer thickness, 
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Galbraith & Head (1975), who analysed data of two-dimensional boundary layers 
(Bradshaw 1967; Schubauer & Spangenberg 1960), found that the maximum non- 
dimensional eddy viscosity increased slightly in equilibrium boundary layers with 
adverse pressure gradients, while it decreased substantially in flows approaching 
separation. The latter tendency was evidently prevailing in the present flow. I n  the 
outer layer (figure I1  a )  an approximately linear drop towards the boundary-layer edge 
was measured; this behaviour was also observed by Elsenaar & Boelsma in their non- 
separated flow. With respect to the z-direction (figure 11 b ) ,  the profiles of the dimen- 
sioiiless viscosity do not differ as much as those in the x-direction. These curves are 
similar to those determined by Bradshaw (1967) in equilibrium boundary layers. 

The extension of eddy-viscosity models from two- to three-dimensional flows implies 
a relationship between the directions of the resultant turbulent shear stress vector and 
the rate-of-strain vector, which can be defined using ( 5 )  and (6): 

(7) 
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Scalar eddy viscosities with N = vSm/vzm equal to unity as well as an isotropic closure 
modelof the pressure-strain correlation with diffusion and convection neglected (Rotta 
1977) imply that both the rate-of-strain vector and the shear-stress vector have the 
same direction everywhere in the flow field. Generally this behaviour cannot be 
expected, and, as Rotta pointed out, deviations must be taken into account in pre- 
diction methods for three-dimensional flows. In the experiments of Elsenaar & 
Boelsma (1974), Dechow (1977) and Johnston (1970) the ratio N of the local eddy 
viscosities was measured to be smaller than unity, 0.5 2 N 2 0.8, with the direction 
of the shear-stress vector approximately half-way between those of the rate-of-strain 
and the velocity vectors, p, N 0*5pG. The ratios of the eddy viscosities determined in 
this experiment (figure 12) suggest an approximately constant value of N _N 1.2 
throughout the boundary layer corresponding to Ip, I > IPG 1 ,  if the regions close to the 
wall and at  the outer edge are excluded because of expected insufficient accuracies of 
Reynolds stresses and velocity gradients. So far we do not have a physical explanation 
for this orientation of the shear-stress vector relative to the rate-of-strain vector. Ifwe 
presume equal accuracy in this experiment and those quoted above, we must conclude 
that the ratio of the eddy viscosities depends strongly on the external flow conditions. 
It should be noted, however, that results for N are quite sensitive to experimental 
inaccuracies, in particular to those associated with determining the shear stress Z)mWm; 
see I1 for a detailed error analysis. 

Rotta (1 979) improved the results of his three-dimensional turbulent boundary- 
layer calculations compared with those of the infinite-swept-wing experiment of 
van den Berg, Elsenaar and Boelsma by optimizing the anisotropic closure of the 
pressure-strain correlation. If, however, the boundary-layer equations are used for the 
numerical simulation of separating shear flows, the predictions might be influenced by 
the assumption 8pfay = 0; and also the usual neglect of Reynolds stress diffusion in 
tangential directions is not generally justified (see e.g. Simpson, Strickland & Barr 
1977). In  the present investigation pressure variations normal to the wall were found 
to be negligible. All Reynolds stress diffusion terms were estimated for station E5 
and were used to check a three-dimensional version of the definition of a ‘pseudo shear 
stress’ due to Simpson et al. (1977): 

The gradients 82/82 and 8 3 / 8 2  and the spatial derivatives of UW were approximately 
ZZ :ro,But the ratio - -  

N 0.1 for y ?  7mm 

(Simpson et al. measured values as high as 0.25 close to the wall) indicates that the 
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FIGURE 13. Measured mixing lengths. 

pseudo shear stress juOp,l is about 10 % smaller than the Reynolds shear stress luVl. 
This effect of the normal-stress diffusion should be taken into account in a numerical 
simulation of the present flow field. 

Eddy viscosities are often defined in terms of algebraic mixing-length formulae (see 
e.g. Michel, Qu6mard & Durant 1969; Pletcher 1969). Though these simple closure 
assumptions only balance the transport equations for the Reynolds stresses with 
convection and diffusion terms neglected, i.e. local equilibrium, they have been applied 
to a great variety of flows with much success. From the measured data the mixing 
length Z,, for the local streamline direction was evaluated as 
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The length scale of the cross-flow is Ng times this value. I n  figures 13(a,b)  the line 
l,, = 0.41 y is included for the sake of comparison. 

I n  two-dimensional zero-pressure-gradient boundary layers inner-layer similarity 
intimately relates the mixing length according to I,, = ky (with the KArmbn constant 
k E 0.41) to the logarithmic law of the wall, which is derived from 7 = rW = constact. 
I n  flows with adverse pressure gradients this assumption is violated because 
&/ay = @/ax. However, when Glowacki & Chi (1 972) analysed the measurements of 
Bradshsw (1967), and when Galbraith & Head (1975) and Galbraith, Sjolander & Head 
( 1  977) reinvestigated the same experiments and those of the 1968 Stanford Conference 
(Coles & H i n t  1969), they found that in adverse-pressure-gradient flows the law of the 
wall approximately fits the measured velocity profiles. From this observation they 
concluded that the mixing length has to obey the relation 1 = k(7/rw)B y. In  the experi- 
ments the ‘effective KBrmttn constant’ keff = k(r/rw)h increased with adverse pressure 
gradients, and was as high as 0-6 for Bradshaw’s strong-adverse-pressure-gradient 
flow. The measurements of East & Sawyer (1979) yielded similar results. I n  the present 
investigation (figure 130,) no well-defined slope aZ,,/ay could be found for y 5 5 mm; 
values of 0.4 < keff < 0.5 might be possible. But for 0 < y 5 7 mm (y+ 5 400) 
I,, = 0 . 4 1 ~  is a reasonable approximation of the measurements except for those of 
station E 3  (figure 13b). 

Glowacki & Chi and Galbraith et al. determined deviations of keff from the KBrmRn 
constant, but still they approximated the inner-layer regions of the mixing-length 
profiles by straight lines. Constant slopes near the wall, however, are contradictory to 
their definition of keff, which is a monotonically increasing function of y. Such behaviour 
has not yet been measured in any experiment, and would yield for example the 
unrealistic value keff = 0.65 a t  y = 7 mm of station E5. 

Galbraith & Head (1975) and Galbraith et al. (1977) assumed that the velocity 
profiles of adverse-pressure-gradient flows could still be described by the universal law 
of the wall, and that therefore an effective Kbrmttn constant had to be taken into 
account. To check this conclusion the velocity profile corresponding to 7 + 7, together 
with 1 = 0 . 4 1 ~  was calculated. The measured profile of the resultant shear stress of 
station E5 was approximated by 7/rW = 1 + C,y, with C, = 0-1 mm-l. Integration of 
auc,/ay = ( r / p ) & / l  yields 

(1 + C,y+)$ - 1 Z(I+C,y+)*+In 

with C, = Clv/u7. Matching this profile to that of the law of the wall a t  station E5 for 
y+ = 15 yields C, = 18.8. The deviations of both profiles increase with y+, and reach 
4% a t  y+ = 400, but these small differences cannot be detected from curve-fitting the 
velocity measurements in the inner layer (see figure 9). The same difficulty also arises 
when analysing the measurements cited above. Additionally the experimental errors 
inherent in U+ complicate the detection of a law-of-the-wall region. Summarizing, the 
measured - as well as the Urn-velocity distributions indicated logarithmic inner- 
layer regions, which matched the law of the wall reasonably well. Deviations from the 
KFLrmbn constant k Y 0.41 could not be detected within the accuracy of the data. 

Taking into account experimental scatter, the magnitudes of the mixing-length 
profiles displayed in figure 13 do not differ much compared with each other. This means, 
however, that the profiles normalized with the boundary-layer thickness S (see 
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figure 14) do not approach constant values in the outer layer, as assumed by most 
mixing-length formulae, because far downstream S is about twice its value a t  the first 
upstream measuring stations. The decrease of the outer-layer values of lxm/S was also 
observed by Elsenaar & Boelsma and Dechow. The boundary-layer thickness used for 
normalizing lXm was defined as the wall distance where the magnitude of the total 
velocity vector reached 0.995 of the outer-edge velocity. The values thus determined 
may differ from those reported by Muller & Krause (1979), which were evaluated 
graphically a t  Dg/Ue = 0.99. 

Finally, twice the value of the turbulent kinetic energy defined as 
- - _  

q = u2+v2+w2 (14) 

was evaluated from the measured data and was plotted in figure 15, because the 
transport equation for this quantity is included in most turbulence models with one 
or more additional differential equations. For two-dimensional flows Bradshaw, 
Ferriss & Atwell (1967) converted the transport equation for q into an equation for the 
shear stress 7 using a constant ratio of both quantities 

I 4 I P  a, = -. 
P 

This ratio was also included by Bradshaw (1971) in his closure assumptions for three- 
dimensional flows. The measured results of a,  displayed in figure 16 did not reveal 
streamwise changes within the data scatter. In the inner layer a slight increase was 
observed with increasing wall distance, then a, was approximately 0.15, as proposed 
by Bradshaw et al. In the outer layer the magnitude of a, decreased slightly near the 
boundary-layer edge. This behaviour was mainly influenced by the shape of the 
turbulent shear stress profiles. 

Since in adverse-pressure-gradient flows the closure assumption of Bradshaw et al. 
might be violated, Simpson et al. ( 1  977) suggested that setting a, F = 0.15 would be a 
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better approximation, where F is the ratio of total production of kinetic energy to  
shear production. For station E5 and y = 10 mm, for example, the leading production 
terms besides (z) a a/&j were estimated as 

so that their sum was about zero, corresponding to F = 1. Therefore no conclusion 
concerning the correction of Simpson et al. was obtained. However, the magnitude of 
each single term above (( 16)-( 18)) shows that the boundary-layer approximation of 
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the turbulent-energy equation does not strictly hold for the downstream region of 
this flow. 

In  addition to the assumption a, = constant, Bradshaw (1971) modelled the 
pressure-strain correlation by introducing another constant a3 proportional to 
a,  I.I/p.". He expected a3 to be nearly constant for the same reasons as a,. The present 
measurements indicated, however, that in the three-dimensional flow region 171 ( y )  
increased and then decreased more rapidly than ?(y), and so their ratio was not 
constant. 

4. Conclusion 
The flow over a plane wall was deflected laterally by means of turning vanes. The 

induced pressure field, which was mapped out with a Prandtl tube, decelerated the 
velocity in initial flow direction and accelerated the cross-flow. Thus the boundary 
layer, tripped a t  the leading edge, developed from nearly two-dimensional to fully 
three-dimensional conditions. At 2 1 stations covering the attached flow region profiles 
of the time-averaged velocities and of the Reynolds stress tensor as well as the wall 
shear stresses were measured. Since the Reynolds stresses deduced from hot-wire 
measurements can be strongly affected by experimental errors, each hot wire used in 
the experiment was calibrated with respect to magnitude and direction of the mean- 
velocity vector. The influence of both an empirical and the actual hot-wire cooling law 
on the measured Reynolds stresses are analysed and discussed by Muller (1982). As 
described in the latter paper the linearized method for calculating the Reynolds 
stresses from the root-expanded hot-wire response equation has been found to be 
valid for local turbulence levels below 20%. 

The main features of the flow investigated are summarized below. At all measuring 
stations the mean-velocity profile of the plane spanned by the wall shear-stress vector 
and the y-axis exhibited a logarithmic wall region, a t  least over the range 30 < y+ < 500. 
The measurements compared reasonably with the law of the wall of two-dimensional 
flows. The wall shear stresses needed for this comparison were inferred from Preston- 
tube measurements, as well as from Clauser charts, and agreed within 10%. The polar 
plots W,(U,) of the streamline co-ordinate systems did not reveal a universal shape. 
The existence of a collateral flow region close to the wall could not be examined, 
because for y < 0.5 mm possible changes of flow directions could not be detected within 
the experimental scatter. 

The profiles of the Reynolds stresses were characteristically shaped for boundary- 
layer flows with adverse pressure gradients. Excluding the measuring stations farthest 
upstream, i.e. column A, the turbulent stress EZiG in the nearly two-dimensional flow 
had a maximum lying a t  the wall, as in zero-pressure-gradient flow, while in the down- 
stream direction the maximum was shifted away from the surface corresponding to 
aplax > 0. The component, too, revealed the same behaviour, yielding large flat 
maxima at  the stations closest to separation. The correlations z a n d  did not change 
as much as uk. The crosswise Reynolds stress Z'mWm increased markedly in the down- 
stream direction, and reached the same order of magnitude as the - correlation. 

The measured data were compared with several closure assumptions. At the up- 
stream measuring stations the eddy viscosities of the local streamwise directions had 
large maxima lying at  about y / S  = 0.5. The peaks decreased downstream, and yielded 

- _  

- 
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profiles comparable to those of equilibrium flows. The ratio of the local crosswise to 
streamwise eddy viscosities had an average value of 1.2, if the near-wall and outer- 
edge results were excluded. This value deviated from other experiments, in which it 
was found to be about 0.5-0.8. Assuming equal measuring accuracies, the results 
indicate a strong dependence on the external flow conditions. From the eddy viscosities 
the corresponding mixing lengths were calculated. In  the inner region the profile of the 
local streamwise mixing length had the slope k N 0.41. Also, a velocity profile com- 
patible with I,, = 0 . 4 1 ~  and with r $. 7w was found to deviate only a few per cent from 
the law-of-the-wall profile, so that deviations from the K&rmAn constant could not be 
detected. Since the absolute values of the mixing lengths were nearly constant in the 
outer layer, these data normalized with the boundary-layer thickness S were not 
constant, because S increased rapidly in the downstream direction. 

The ratio a, of the magnitude of the resultant turbulent shear stress to twice the 
value of the turbulent kinetic energy, assumed in Bradshaw’s closure models to be a 
constant of about 0.15 throughout the boundary layer, was validated for the major 
part of the present flow field. Towards the wall a, decreased slightly because of a rapid 
drop of 171. The proposal of Simpson et al. (1977) that a,F = 0.15 would be the appro- 
priate assumption for flows with strong adverse pressure gradients, where F is the 
ratio of total production of turbulent energy to shear production, was checked in the 
downstream part of the flow field at station E5. Three production terms besides 
- EFaD/ay were not negligible, but their sum was approximately zero, corresponding 
to F = 1. Besides a,, Bradshaw’s turbulence model for three-dimensional flows assumes 
the relation a3cc I7I/vX = constant, which was found not to be the case in this 
investigation. 

From the measured velocity correlations all Reynolds-stress diffusion terms were 
estimated from station E5 to check the assumption of negligible tangential diffusion 
within the boundary-layer approximations. The term a ( 2 -  v2)/ax was found to be 
up to 10% of a( -=)lay, thus diminishing the effect of this shear stress. 

All the measured data, i.e. mean velocities, Reynolds stresses, pressure distribution, 
wall shear stresses as well as integral thicknesses evaluated from the as and ms velocity 
profiles were published by Muller (1979, 1980), and are available on tape. 

- 

The author is indebted to Professor E. Krause of the Aerodynamisches Institut of 
the Technische Hochschule Aachen, who initiated and directed this research, acknowl- 
edges the helpful discussions with Professors H. H. Fernholz and J. D. Vagt of the 
Technische Universitat, West Berlin, and wishes to thank his colleagues for help and 
assistance. This work, which was mainly sponsored by the Deutsche Forschungs- 
gemeinschaft, forms part of the author’s doctoral dissertation. 

R E F E R E N C E S  

AERODYNAMISCHE VERSUCHSANSTALT UND MAX-PLANCK-INSTITUT FUR STR~MUNGSFORSCHUNC 
1964 Strowmngsmessgerate und  Hilfseinrichtungen, Gottingen. 

BERG, B. v. D. & ELSENAAR, A. 1972 Measurements in a three-dimensional incompressible 
turbulent boundary layer in an adverse pressuregradient under inkiteswept wingconditions. 
NLR Tech. Rep. no. 72092 U. 

BERG, B. v. D., ELSENAAR, A., LINDHOUT, J. P. F. & WESSELINO;, P. 1975 Measurements in an 
incompressible three-dimensional turbulent boundary layer, under infinite swept-wing 
conditions, and comparison with theory. J .  Fluid Mecfi. 70, 127. 



Three-dimensional pressure-driven boundary layer 151 

BRADSHAW, P. 1967 The turbulence structure of equilibrium boundary layers. J .  Fluid Mech. 
29, 625. 

BRADSHAW, P. 1971 Calculation of three-dimensional turbulent boundary layers. J .  Fluid Mech. 
46, 417. 

BRADSHAW, P. 1972 The understanding and prediction of turbulent flow. Jahrbuch der Deutschen 
Qesellschaft f u r  Luft- und  Raumfahrt, p. 51. 

BRADSHAW, P., FERRISS, 9. H. & ATWELL, N. P. 1967 Calculation of boundary-layer develop- 
ment using the turbulent energy equation. J .  Fluid Mech. 28, 593. 

CHAMPAGNE, F. H., SLEICHER, C. A. & WEHRMANN, 0. H. 1967 Turbulence measurements with 
inclined hot-wires. Part 1. Heat transfer experiments with inclined hot-wire. J .  Fluid Mech. 
28, 153. 

CHAPMAN, D. R. 1980 Trends and Pacing Items in Computational Aerodynamics. In Proc. 7th 
Int. Conf. on  Numerical Methods in Fluid Dynamics, Stanford University. Lecture Notes in 
Physics, vol. 141 p. 1.  Springer. 

CLAUSER, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J .  Aero. Sci. 21, 
91. 

COLES, D. E. 1956 The law of the wake in the turbulent boundary layer. J .  Fluid Mech. 1, 191. 
COLES, D. E. & HIRST, E. A. (eds.) 1969 Proc. AFOSR-IFP Stanford Conf. on Computation of 

T u ~ ~ u l e n t  Boundary Layers. Thermoscience Division, Stanford. 
DECHOW, R. 1977 Mittlere Geschwindigkeit und Reynoldsscher Spannungstensor in der 

dreidimensionalen turbulenten Wandgrenzschicht vor einem stehenden Zylinder. In 
Stromungsmechanik und Striimungsmaschinen, Heft 2 1. Mitteilungen des Instituts fur 
Stromungslehre und Stromungsmaschinen, Univ. Karlsruhe. 

DECHOW, R. & FELSCH, K. 0. 1977 Measurements of the mean velocity and of the Reynolds 
stress tensor in a three-dimensional turbulent boundary layer induced by a cylinder standing 
011 a flat wall. In Proc. 1st Symp. on  Turbulent Shear Flows, Pennsylvania State Univ., p. 9.11. 

EAST, L. F. 1975 Computation for three-dimensional turbulent boundary layers. F F A  Tech. 
Note AE-1211. 

EAST, L. F. & HOXEY, R. P. 1969 Low-speed three-dimensional turbulent boundary layer data, 
Part I. RAE Tech. Rep. no. 69041. 

EAST, L. F. & SAWYER, W. 0. 1979 An investigation of the structure of equilibrium turbulent 
boundary layers. In  Turbulent Boundary Layers. Experiment, Theory and Modelling. AGARD 
C'onf. Proc. no. 271, p. 6.1. 

ELSENAAR, A. & BOELSMA, S. H. 1974 Measurements of the Reynolds stress tensor in a three- 
dimensional turbulent boundary layer under infinite swept wing conditions. N L R  Tech. 
Bep. no. 74095 U. 

FANNEL0P, T. K. & KROGSTAD, P. A. 1975 Three-dimensional turbulent boundary layers in 
external flows: a report on EUROMECH 60. J. Fluid Mech. 71, 815. 

GALBRAITH, R. A. McD. & HEAD, M. R. 1975 Eddy viscosity and mixing length from measured 
boundary layer development. Aero. Quart. 26, 133. 

GALBRAITH, R. A. McD., SJOLANDER, S. & HEAD, M. R. 1977 Mixing length in the wall region 
of turbulent boundary layers. Aero. Quart. 28, 97. 

GESSNER, F. B. & MOLLER, G. L. 1971 Response behaviour of hot-wires in shear flows. J .  Fluid 
Mech. 47, 449. 

GLOWACKI, W. J. & CHI, S. W. 1972 Effect of pressure gradient on mixing length for equilibrium 
boundary layers. A.I.A.A. Paper no. 72-213. 

HORNUNG, H. G. & JOUBERT, P. N. 1963 The mean velocity profile in three-dimensional turbu- 
lent boundary layers. J .  Fluid Mech. 15, 368. 

JOHNSTON, J. P. On the three-dimensional turbulent boundary layer generated by 
secondary flow. Trans. A.S.M.E. D, J .  Basic Engng 82, 233. 

JOHNSTON, J. P. 1970 Measurements in a three-dimensional turbulent boundary layer induced 
by a swept, forward facing step. J .  Fluid Mech. 42, 823. 

KLEBANOFF, P. S. 1955 Characteristics of turbulence in a boundary layer with zero pressure 
gradient. N A C A  Rep. no. 1247. 

KRAUSE, E. 1974 Analysis of viscous flow over swept wings. ICAS  Paper no. 74-20. 

1960 



152 U .  R. Muller 

KRAUSE, E., HIRSCHEL, E. H. & BOTHMANN, TH. 1969 Die numerisehe Integration der 
Bewegungsgleichungen dreidimensionaler laminarer ltompressibler Grenzschichten. DCILR- 
Fachbuchreihe, Band 3. 

KRAUSE, E., HIRSCHEL, E. H. & KORDULLA, W. 1976 Fourth order ‘Mehrstellen’ - integration 
for three-dimensional turbulent boundary layers. Comp. & Fluids 4, 77. 

KROGSTAD, P. 1979 Investigation of a three-dimensional turbulent boundary layer driven by 
simple two-dimensional potential flow. Div. Aero- and Gas Dyn., Norwegian Inst. Tech. 

LUDWIEG, H. & TILLMANN, W. 1949 Untersuchung uber die Wandschubspannung in turbu- 
lenten Reibungsschichten. Ing. Arch. 17, 288. 

MAGER, A. 1952 Generalization of boundary layer momentum integral equations to three- 
dimensional flows including those of rotating systems. N A C A  Rep. no. 1067. 

MICHEL, R.,  QUEMARD, C. & DURANT, R. 1969 Application d’un schhma de longeur de niBlange 
B 1’Btude des couches limites turbulentes d’hquilibre. ONERA Tech. Note no. 154. 

M ~ ~ L L E R ,  U. R. 1979 Messung von Reynoldsschen Spannungen und zeitlich gemittelten 
Geschwindigkeiten in einer dreidimensionalen Grenzschicht mit nichtverschwindenden 
Druckgradienten. Dissertation, University of Aachen. 

MULLER, U. R. 1980 Mean velocities and Reynolds stresses measured in a three-dimensional 
boundary layer. In Proc. Viscous and Interacting Flow Field Effects, 5th U.S. Air Force and 
the Federal Republic of Germany Data Exchange Agreement Meeting. A F F D L  Tech. Rep. no. 

MULLER, U. R. 1982 On the accuracy of turbulence measurements with inclined hot wires. 
J .  Fluid Mech. 118, 155. 

MULLER, U. R. & KRAUSE, E. 1979 Measurements of mean velocities and Reynolds stresses in 
an incompressible three-dimensional turbulent boundary layer. In Proc. 2nd Symp. on 
Turbulent Shear Flows, Imperial College, London, p. 15.36. 

PATEL, V. C. 1965 Calibrations of the Preston tube and limitations on its use in pressure 
gradients. J .  Fluid Mech. 23, 185. 

PIERCE, F. J. & DUERSON, S. H. 1975 Reynolds stress tensors in an end-wall three-dimensional 
channel turbulent boundary layer. Trans. A.S.M.E. I, J .  Fluids Engng 97, 618. 

PIERCE, F. J. & EKZEWE, S. H. 1974 Measurements of the Reynolds stress tensor in a three- 
dimensional turbulent boundary layer. Interim Tech. Rep., Virginia Polytechnic Institute. 

PIERCE, F. J. & KROMMENHOEK, D. 1968 Wall shear stress diagnostics in three-dimensional 
turbulent boundary layers. Interim Tech. Rep. no. 2, Project 68583, U.S. Army Research 
Ofice - Durham. 

PIERCE, F. J. & ZIMMERMANN, B. B. 1973 Wall shear stress inference from two and three- 
dimensional turbulent boundary layer velocity profiles. Trans. A.S.M.E. I ,  J .  Fluids Engng 
95, 61. 

PLETCHER, R . H .  1969 On a finite difference solution for the constant property turbulent 
boundary layer. A.I.A.A. J .  7, 305. 

PRAHLAD, T. S. 1968 Wall similarity in three-dimensional turbulent boundary layers. A.I.A.A. 
J .  6, 1772. 

PRESTON, J. H. 1954 The determination of turbulent skin friction by means of Pitot tubes. 
J .  R. Aero. SOC. 58, 109. 

REINSCH, C. H. 1967 Smoothing by cubic splines. Num. Math. 10, 177. 
ROTTA, J. C. 1977 A family of turbulence models for three-dimensional thin shear layers. In  

Proc. 1st Symp. on Turbulent Shear Flows, Pennsylvania State Univ., p. 10.27. 
ROTTA, J. C. 1979 Eine theoretische Untersuchung uber den Einfluss der Druckscherkorrelation 

auf die Entwicklung dreidimensionaler turbulenter Grenzschichten. DFVLR-FB no. 79-05. 
SANDBORN, V. A. 1976 Effect of velocity gradients on measurements of turbulent shear stress. 

A.I.A.A. J .  14, 400. 
SCRRAUB, F. A. & KLINE, S. J. 1965 A study of the structure of the turbulent boundary layer 

with and without longitudinal pressure gradients. Rep. MD-12, Thermosci. Div., Mech. 
Engng, Stanford Univ. 

SCHUBAUER, G. B. & SPANGENBERG, W. G. 1960 Forced mixing in boundary layers. J .  Fluid 
Mech. 8, 10. 

80-3088, p. 359. 



Three-dimensional pressure-driven boundary layer 153 

SIMPSON, R. L., STRICKLAND, J. H. & BARR, P. W. 1977 Features of a separating turbulent 
boundary layer in the vicinity of separation. J .  Fluid Mech. 79, 553. 

SPALDING, D. B. 1961 A single formula for the law of the wall. Trans. A.S.M.E. E, J .  Appl. 
Mech. 83, 455. 

VAGT, J. D. & FERNHOLZ, H. H. 1979 A discussion of probe effect8 and improved measuring 
techniques in the near-wall region of anincompressible three-dimensional turbulent boundary 
layer. In  Turbulent Boundary Layers. Experiment, Theory and Modelling. A C A R D  Conf. 
Proc. no. 271, p, 10.1. 




